Alessia Tomaselli : 22 Luglio 2023 20:04
I ricercatori del MIT hanno sviluppato PIGINet, un nuovo sistema che mira a migliorare in modo efficiente le capacità di risoluzione dei problemi dei robot domestici, riducendo i tempi di pianificazione del 50-80%.
Ciò è stato rilevato da un comunicato stampa dell’istituto pubblicato venerdì.
In condizioni normali, i robot domestici seguono procedimenti predefiniti per eseguire i compiti, il che non è sempre adatto ad ambienti diversi o mutevoli. PIGINet, come descritto dal MIT, è una rete che prende in considerazione “piani, immagini, obiettivi e fatti iniziali”, quindi prevede la probabilità che un piano di attività possa essere perfezionato per trovare piani di movimento fattibili.
Iscriviti GRATIS alla RHC Conference 2025 (Venerdì 9 maggio 2025)
Il giorno Venerdì 9 maggio 2025 presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terrà
la RHC Conference 2025. Si tratta dell’appuntamento annuale gratuito, creato dalla community di RHC, per far accrescere l’interesse verso le tecnologie digitali, l’innovazione digitale e la consapevolezza del rischio informatico.
La giornata inizierà alle 9:30 (con accoglienza dalle 9:00) e sarà interamente dedicata alla RHC Conference, un evento di spicco nel campo della sicurezza informatica. Il programma prevede un panel con ospiti istituzionali che si terrà all’inizio della conferenza. Successivamente, numerosi interventi di esperti nazionali nel campo della sicurezza informatica si susseguiranno sul palco fino alle ore 19:00 circa, quando termineranno le sessioni. Prima del termine della conferenza, ci sarà la premiazione dei vincitori della Capture The Flag prevista per le ore 18:00.
Potete iscrivervi gratuitamente all'evento utilizzando questo link.
Per ulteriori informazioni, scrivi a [email protected] oppure su Whatsapp al 379 163 8765
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Il team ha valutato la capacità del nuovo sistema di aiutare un robot a funzionare in cucina. Hanno misurato il tempo necessario per risolvere i problemi con l’assistenza di PIGINet rispetto agli approcci precedenti.
Hanno scoperto che PIGINet ha ridotto significativamente il tempo di pianificazione dell’80% negli scenari più semplici e del 20-50% in quelli più complessi.
“Sistemi come PIGINet, che sfruttano la potenza dei metodi basati sui dati per gestire in modo efficiente casi già noti, ma che possono comunque ricorrere a metodi di pianificazione “di primo principio” per verificare i suggerimenti basati sull’apprendimento e risolvere problemi nuovi, offrono il meglio di entrambi i mondi, fornendo soluzioni generali affidabili ed efficienti per un’ampia varietà di problemi”, ha dichiarato Leslie Pack Kaelbling, professore del MIT e ricercatore principale del CSAIL.
I ricercatori si sono avvalsi anche di modelli linguistici di visione preaddestrati e di trucchi per aumentare i dati per far fronte alla scarsità di dati di addestramento validi per i robot domestici.
“Poiché la casa di ognuno di noi è diversa, i robot dovrebbero essere in grado di risolvere i problemi adattandosi ad ogni luogo, anziché limitarsi a seguire le indicazioni passo passo. La nostra idea è lasciare che un task planner generico generi piani di attività e utilizzare un modello di deep learning per selezionare quelli più promettenti. Il risultato è un robot domestico più efficiente, adattabile e pratico, in grado di navigare agilmente anche in ambienti complessi e dinamici. Inoltre, le applicazioni pratiche di PIGINet non si limitano alle abitazioni”, ha dichiarato Zhutian Yang, dottorando del MIT CSAIL e autore principale del lavoro.
“Il nostro obiettivo futuro è quello di perfezionare ulteriormente PIGINet per suggerire piani di attività alternativi dopo aver identificato azioni non fattibili. Ciò accelererà ulteriormente la generazione di piani di attività fattibili senza la necessità di grandi insiemi di dati per addestrare un pianificatore generico da zero. Crediamo che questo possa rivoluzionare il modo in cui i robot vengono addestrati durante lo sviluppo e poi applicati nelle case di tutti”.
“Questo lavoro affronta una sfida importante nell’implementazione di un robot generico: come imparare dall’esperienza passata per accelerare il processo decisionale in ambienti non strutturati e colmi di ostacoli”. Questo è ciò che ha dichiarato Beomjoon Kim PhD ’20, professore assistente presso la Graduate School of AI del Korea Advanced Institute of Science and Technology (KAIST).
Il ransomware HellCat è apparso nella seconda metà del 2024 e ha attirato l’attenzione degli analisti grazie all’umorismo delle sue dichiarazioni pubbliche. Ricordiamo l’...
Il 28 marzo 2025, un utente del noto forum di cybersecurity BreachForums, con lo pseudonimo ThinkingOne, ha rivelato quello che potrebbe essere il più grande data breach mai registrato nel mondo ...
Quando Jeffrey Goldberg dell’Atlantic ha fatto trapelare accidentalmente un messaggio di gruppo privato di alti funzionari statunitensi su un possibile attacco contro gli Houthi nello Yemen, ha...
Ogni mese diventa sempre più evidente: le password non funzionano più. Gli hacker hanno imparato a eludere anche la protezione a due fattori sfruttando sessioni rubate e milioni di dati comp...
La pseudonimizzazione è una tecnica di protezione dei dati definita dall’art. 4(5) del GDPR. Consiste nella trasformazione dei dati personali in modo tale che non possano più essere a...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006