
I ricercatori hanno sviluppato un nuovo metodo di attacco backdoor chiamato NoiseAttack, capace di compromettere più classi contemporaneamente con un minimo di configurazione. A differenza dei precedenti approcci che si concentrano su una singola classe, NoiseAttack utilizza la densità spettrale di potenza del rumore gaussiano bianco (WGN) come trigger invisibile durante la fase di addestramento.
I test sperimentali mostrano che NoiseAttack ottiene alti tassi di successo su diversi modelli e set di dati, eludendo i sistemi di rilevamento delle backdoor più avanzati.
Quando si parla di “più classi” in riferimento a NoiseAttack, si intende che l’attacco non si limita a colpire una sola categoria o classe di dati in un modello di classificazione. Invece, può prendere di mira contemporaneamente più classi, inducendo errori in varie categorie di output. Ciò significa che il modello può essere manipolato per commettere errori in diverse classificazioni contemporaneamente, rendendo l’attacco più versatile e potente.

Il rumore gaussiano bianco (WGN) utilizzato in NoiseAttack è impercettibile e applicato universalmente, ma attivato solo su campioni selezionati per indurre classificazioni errate su più etichette target.
Questo metodo consente un attacco backdoor multi-target su modelli di deep learning senza compromettere le prestazioni sugli input non compromessi.
Addestrando il modello su un dataset contaminato con WGN accuratamente applicato, gli avversari possono causare classificazioni errate intenzionali, superando le difese avanzate e offrendo grande flessibilità nel controllo delle etichette di destinazione.

Il framework elude efficacemente le difese all’avanguardia e raggiunge alti tassi di successo degli attacchi su vari set di dati e modelli. Introducendo rumore gaussiano bianco nelle immagini di input, NoiseAttack può classificarle erroneamente in etichette mirate senza influire in modo significativo sulle prestazioni del modello su dati puliti.

Attraverso analisi teoriche ed esperimenti approfonditi, gli autori dimostrano la fattibilità e l’ubiquità di questo attacco. NoiseAttack raggiunge alti tassi di successo medi degli attacchi su vari set di dati e modelli senza influire in modo significativo sulla precisione per le classi di non vittime.
Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Cyber NewsL’Italia si trova oggi davanti a una sfida digitale senza precedenti, dove la corsa all’innovazione non sempre coincide con una protezione adeguata delle infrastrutture. Pertanto la sicurezza dei sistemi connessi è diventata l’anello debole della…
Cyber NewsUna nuova vulnerabilità scoperta dal ricercatore italiano Alessandro Sgreccia (rainpwn) del gruppo HackerHood di Red Hot Cyber è stata scoperta nei dispositivi ZYXEL permette di ottenere accesso root attraverso una configurazione apparentemente innocua del servizio…
HackingLa parola hacking, deriva dal verbo inglese “to hack”, che significa “intaccare”. Oggi con questo breve articolo, vi racconterò un pezzo della storia dell’hacking, dove tutto ebbe inizio e precisamente nel piano terra dell’edificio 26…
Cyber NewsL’Italia è finita ancora una volta nel mirino del collettivo hacktivista filorusso NoName057(16). Dopo i pesanti disservizi che hanno colpito l‘Università La Sapienza e le Gallerie degli Uffizi all’inizio di questa settimana. L’offensiva digitale russa…
Cyber NewsSecondo quanto riportato dal Corriere della Sera, l’attacco informatico che ha paralizzato i sistemi dell’Università La Sapienza non sarebbe motivato da fini politici. Gli hacker avrebbero inviato messaggi di rivendicazione spiegando di non agire per…