Massimizza l'Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning
Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
Fortinet 970x120px
Banner Mobile
Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

23 Gennaio 2024 06:59

Nel sempre mutevole mondo del Machine Learning, selezionare il modello più efficace per un determinato compito è un impegno non banale, che può richiedere molto tempo. Tradizionalmente, i metodi di valutazione cosi detti offline, come lo split tra dati di training e test o la k-fold cross validation sono quelli più conosciuti e utilizzati dai data scientist. Tuttavia, possono risultare carenti nel considerare cambiameni della distribuzione che possono verificarsi in scenari reali. In poche parole il modello potrebbe essere stato trainato su dei dati che pero non sono simili a quelli reali che il modello deve gestire quando è in produzione. Entra in gioco la valutazione online, un metodo condotto dopo l’implementazione e il deploy, che offre preziosi dettagli sulle prestazioni del modello in un ambiente dinamico.

Shadow Deployment: Raddoppiare i costi per una scelta consapevole

Il “deployment ombra” comporta il lancio simultaneo di entrambi i modelli, con tutte le richieste dirette a ciascun modello in parallelo. La successiva raccolta di dati consente un’analisi approfondita per identificare il modello che offre le prestazioni migliori. Tuttavia, è essenziale notare che questo approccio comporta uno svantaggio: il costo di inferenza è raddoppiato poiché entrambi i modelli sono interrogati per ciascuna richiesta.

A/B Test: Svelare la Significatività Statistica

Il test A/B, forse il metodo più comunemente utilizzato, comporta il deployment di entrambi i modelli e la suddivisione casuale del traffico tra di essi. La successiva valutazione viene condotta sui log, utilizzando test di ipotesi statistica per accertare se uno dei modelli supera significativamente l’altro. Questo metodo fornisce un robusto quadro statistico per prendere decisioni informate sulla selezione del modello.

Canary Release: Rivelazione Graduale per la Mitigazione del Rischio

In situazioni in cui il rilascio di una nuova versione di un modello comporta rischi potenziali, il metodo di rilascio canary offre un approccio graduale e controllato. Invece di reindirizzare casualmente il traffico con una suddivisione del 50% tra i modelli A e B, una piccola parte del traffico viene reindirizzata al nuovo modello (modello canary). Se il modello canary ha prestazioni positive, il reindirizzamento del traffico aumenta gradualmente fino a gestire il 100% del carico.

Esperimenti Interattivi: Sfruttare il Feedback degli Utenti per la Valutazione

Per i sistemi in cui l’interazione dell’utente svolge un ruolo fondamentale, come nei sistemi di raccomandazione, gli esperimenti interattivi offrono una straordinaria via per la valutazione del modello. Utilizzando contemporaneamente entrambi i modelli, agli utenti viene chiesto di fornire feedback selezionando la loro preferenza. Questo approccio guidato dall’utente offre preziosi dettagli sulle preferenze degli utenti e sull’efficacia di ciascun modello.

Bandit: Bilanciare l’Esplorazione e lo Utilizzo

Mentre il test A/B è spesso considerato un approccio senza stato, i meccanismi di tipo bandit introducono una dimensione con stato alla valutazione del modello. Utilizzando algoritmi complessi, questi meccanismi monitorano continuamente le prestazioni di ciascun modello in tempo quasi reale. Questa valutazione continua consente una redistribuzione dinamica del traffico, cercando un equilibrio tra la sperimentazione del nuovo modello e la minimizzazione dell’impatto complessivo sulle prestazioni del sistema.

Conclusioni

Nel Machine Learning, la ricerca del modello ottimale coinvolge una serie di metodi di valutazione offline e online. Dallo shadow deployment ai test A/B, dai canary release agli esperimenti interattivi e ai meccanismi bandit, ciascun approccio offre una prospettiva unica. Mentre il panorama dell’apprendimento automatico continua a evolversi, una comprensione articolata di questi metodi di valutazione permette agli operatori del settore di prendere decisioni informate, assicurando il rilascio di modelli robusti che resistono alle sfide degli scenari reali.

Seguici su Google News, LinkedIn, Facebook e Instagram per ricevere aggiornamenti quotidiani sulla sicurezza informatica. Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Immagine del sito
Marcello Politi

Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Lista degli articoli

Articoli in evidenza

Immagine del sito
TikTok nel mirino per violazioni della protezione dei dati in Europa
Redazione RHC - 21/12/2025

La popolare app video TikTok si è trovata al centro di un nuovo scandalo per violazioni delle normative europee sulla protezione dei dati. È stato scoperto che il servizio traccia le attività degli utenti non…

Immagine del sito
L’account Telegram dell’ex premier israeliano Naftali Bennett è stato hackerato
Redazione RHC - 21/12/2025

L’ex primo ministro israeliano Naftali Bennett ha ammesso che il suo account Telegram è stato hackerato, sebbene il suo dispositivo non sia stato compromesso. Ha fatto l’annuncio in seguito alle segnalazioni di un iPhone hackerato…

Immagine del sito
CVE-2025-20393: zero-day critico nei Cisco Secure Email Gateway
Redazione RHC - 21/12/2025

Una falla zero-day critica nei dispositivi Cisco Secure Email Gateway e Cisco Secure Email and Web Manager sta facendo tremare i ricercatori di sicurezza. Con oltre 120 dispositivi vulnerabili già identificati e sfruttati attivamente dagli…

Immagine del sito
Il cloud USA può diventare un’arma geopolitica? Airbus inizia a “cambiare rotta”
Redazione RHC - 21/12/2025

Negli ultimi mesi, una domanda sta emergendo con sempre maggiore insistenza nei board aziendali europei: il cloud statunitense è davvero sicuro per tutte le aziende? Soprattutto per quelle realtà che operano in settori strategici o…

Immagine del sito
2025, l’anno nero delle criptovalute: la Corea del Nord ruba 2 miliardi di dollari
Redazione RHC - 21/12/2025

Nel 2025, gli hacker nordcoreani hanno rubato la cifra record di 2 miliardi di dollari in criptovalute, il 51% in più rispetto all’anno precedente. Tuttavia, il numero di attacchi è diminuito, mentre i danni sono…