Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca
970x20 Itcentric
Enterprise BusinessLog 320x200 1
Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

Marcello Politi : 23 Gennaio 2024 06:59

Nel sempre mutevole mondo del Machine Learning, selezionare il modello più efficace per un determinato compito è un impegno non banale, che può richiedere molto tempo. Tradizionalmente, i metodi di valutazione cosi detti offline, come lo split tra dati di training e test o la k-fold cross validation sono quelli più conosciuti e utilizzati dai data scientist. Tuttavia, possono risultare carenti nel considerare cambiameni della distribuzione che possono verificarsi in scenari reali. In poche parole il modello potrebbe essere stato trainato su dei dati che pero non sono simili a quelli reali che il modello deve gestire quando è in produzione. Entra in gioco la valutazione online, un metodo condotto dopo l’implementazione e il deploy, che offre preziosi dettagli sulle prestazioni del modello in un ambiente dinamico.

Shadow Deployment: Raddoppiare i costi per una scelta consapevole

Il “deployment ombra” comporta il lancio simultaneo di entrambi i modelli, con tutte le richieste dirette a ciascun modello in parallelo. La successiva raccolta di dati consente un’analisi approfondita per identificare il modello che offre le prestazioni migliori. Tuttavia, è essenziale notare che questo approccio comporta uno svantaggio: il costo di inferenza è raddoppiato poiché entrambi i modelli sono interrogati per ciascuna richiesta.

A/B Test: Svelare la Significatività Statistica

Il test A/B, forse il metodo più comunemente utilizzato, comporta il deployment di entrambi i modelli e la suddivisione casuale del traffico tra di essi. La successiva valutazione viene condotta sui log, utilizzando test di ipotesi statistica per accertare se uno dei modelli supera significativamente l’altro. Questo metodo fornisce un robusto quadro statistico per prendere decisioni informate sulla selezione del modello.

Canary Release: Rivelazione Graduale per la Mitigazione del Rischio


Rhc Conference Sponsor Program 2

Sponsorizza la prossima Red Hot Cyber Conference!

Il giorno Lunedì 18 maggio e martedì 19 maggio 2026 9 maggio 2026, presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terrà la V edizione della la RHC Conference
Si tratta dell’appuntamento annuale gratuito, creato dalla community di RHC, per far accrescere l’interesse verso le tecnologie digitali, l’innovazione digitale e la consapevolezza del rischio informatico. 
Se sei interessato a sponsorizzare l'evento e a rendere la tua azienda protagonista del più grande evento della Cybersecurity Italiana, non perdere questa opportunità. E ricorda che assieme alla sponsorizzazione della conferenza, incluso nel prezzo, avrai un pacchetto di Branding sul sito di Red Hot Cyber composto da Banner più un numero di articoli che saranno ospitati all'interno del nostro portale. 
Quindi cosa stai aspettando? Scrivici subito a [email protected] per maggiori informazioni e per accedere al programma sponsor e al media Kit di Red Hot Cyber.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

In situazioni in cui il rilascio di una nuova versione di un modello comporta rischi potenziali, il metodo di rilascio canary offre un approccio graduale e controllato. Invece di reindirizzare casualmente il traffico con una suddivisione del 50% tra i modelli A e B, una piccola parte del traffico viene reindirizzata al nuovo modello (modello canary). Se il modello canary ha prestazioni positive, il reindirizzamento del traffico aumenta gradualmente fino a gestire il 100% del carico.

Esperimenti Interattivi: Sfruttare il Feedback degli Utenti per la Valutazione

Per i sistemi in cui l’interazione dell’utente svolge un ruolo fondamentale, come nei sistemi di raccomandazione, gli esperimenti interattivi offrono una straordinaria via per la valutazione del modello. Utilizzando contemporaneamente entrambi i modelli, agli utenti viene chiesto di fornire feedback selezionando la loro preferenza. Questo approccio guidato dall’utente offre preziosi dettagli sulle preferenze degli utenti e sull’efficacia di ciascun modello.

Bandit: Bilanciare l’Esplorazione e lo Utilizzo

Mentre il test A/B è spesso considerato un approccio senza stato, i meccanismi di tipo bandit introducono una dimensione con stato alla valutazione del modello. Utilizzando algoritmi complessi, questi meccanismi monitorano continuamente le prestazioni di ciascun modello in tempo quasi reale. Questa valutazione continua consente una redistribuzione dinamica del traffico, cercando un equilibrio tra la sperimentazione del nuovo modello e la minimizzazione dell’impatto complessivo sulle prestazioni del sistema.

Conclusioni

Nel Machine Learning, la ricerca del modello ottimale coinvolge una serie di metodi di valutazione offline e online. Dallo shadow deployment ai test A/B, dai canary release agli esperimenti interattivi e ai meccanismi bandit, ciascun approccio offre una prospettiva unica. Mentre il panorama dell’apprendimento automatico continua a evolversi, una comprensione articolata di questi metodi di valutazione permette agli operatori del settore di prendere decisioni informate, assicurando il rilascio di modelli robusti che resistono alle sfide degli scenari reali.

Immagine del sitoMarcello Politi
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Vulnerabilità F5 BIG-IP: 266.000 dispositivi a rischio nel mondo! 2500 in Italia
Di Redazione RHC - 20/10/2025

La Cybersecurity and Infrastructure Security Agency (CISA) e il Multi-State Information Sharing & Analysis Center (MS-ISAC) pubblicano questo avviso congiunto sulla sicurezza informatica (CSA) in ...

Immagine del sito
Interruzione servizi cloud Amazon Web Services, problemi globali
Di Redazione RHC - 20/10/2025

Un’importante interruzione dei servizi cloud di Amazon Web Services (AWS) ha causato problemi di connessione diffusi in tutto il mondo, coinvolgendo piattaforme di grande rilievo come Snapchat, Fort...

Immagine del sito
Stanno Arrivando! Unitree Robotics lancia l’umanoide H2 Destiny Awakening
Di Redazione RHC - 20/10/2025

L’azienda cinese “Unitree Robotics” ha sfidato il primato della robotica statunitense con il lancio del suo umanoide H2 “Destiny Awakening”. L’umanoide unisce la forma umana a movimenti so...

Immagine del sito
Il processore Intel 386 compie 40 anni: così nacque l’era dei 32 bit
Di Redazione RHC - 20/10/2025

Il 20 ottobre 2025 segna un anniversario importante per la storia dell’informatica: il processore Intel 80386, noto anche come i386, celebra il suo 40° compleanno. Ed è un compleanno importante! L...

Immagine del sito
ChatGPT scrive la truffa perfetta… ma il truffatore lascia dentro le istruzioni dell’IA
Di Redazione RHC - 20/10/2025

A prima vista, l’email sembrava impeccabile. Un promemoria di pagamento di PagoPA, ben strutturato, con linguaggio formale, riferimenti al Codice della Strada e persino un bottone blu “Accedi al P...