Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
UtiliaCS 970x120
TM RedHotCyber 320x100 042514
Jupyter Notebook: Il Segreto dei Data Scientist o un Ostacolo al Successo? Scopri i Pro e i Contro

Jupyter Notebook: Il Segreto dei Data Scientist o un Ostacolo al Successo? Scopri i Pro e i Contro

6 Marzo 2024 07:11

Questo tema è ancora molto discusso. C’è chi ama gli Jupyter Notebook e chi li odia. In questo articolo vorrei parlare un pò dei pro e contro di questo strumento e capire quali vantaggi potrebbe avere un data scientist lavorando con un IDE.

Cos’è un Jupyter Notebooks?

JPMdEIQPaHAOxx3OGAhWovYKCu3mm JOCYUcANINif3SBTW DagyLZQYXeJv5NcWtdjY Smocrmk9QgasN RkQzoKY7JM2MoWCA6CUY2hcEqnK QJuA6DUHoJSrrDOpb7hWlQ FtFuv74 6FH1sXbUb9rA=s2048

Un Jupyter Notebook è una web application interattiva che permette di lavorare e condividere documenti computazionali. Ciò significa che in tali notebook possiamo inserire testo, immagini, video, hyperlink come nei comuni documenti (word ad esempio), ma anche codice che può essere eseguito all’interno del notebook stesso.


Cyber Offensive Fundamentale Ethical Hacking 02

Avvio delle iscrizioni al corso Cyber Offensive Fundamentals
Vuoi smettere di guardare tutorial e iniziare a capire davvero come funziona la sicurezza informatica?
La base della sicurezza informatica, al di là di norme e tecnologie, ha sempre un unico obiettivo: fermare gli attacchi dei criminali informatici. Pertanto "Pensa come un attaccante, agisci come un difensore". Ti porteremo nel mondo dell'ethical hacking e del penetration test come nessuno ha mai fatto prima. Per informazioni potete accedere alla pagina del corso oppure contattarci tramite WhatsApp al numero 379 163 8765 oppure scrivendoci alla casella di posta [email protected].


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

I notebook sono molto apprezzati dai Data Scientist poiché consentono di condurre esperimenti e ricerche sui modelli e sui dati, permettendo contemporaneamente di annotare le osservazioni nelle celle adiacenti al codice. Questi strumenti risultano inoltre estremamente utili nell’ambito dell’insegnamento, sfruttando la medesima caratteristica.

Anche Google offre la possibiltà di creare Jupuyter Notebook sulla loro piattaforma Google Colab.

UzvPfomMIaitjzdMQHTcmSeSAovaKCFNrrvP ROS2kAvZIzcOdqTXZEL4GmfmkhfTNqiHRCl FqjAobjEiyVTG2GdXkqqX4d0fH1Mn7Fd HMqHTi2izGYlkkMCoKxtbadBo0CqD3MaiaEzCdCAXbMI2bIg=s2048

Ciò consente l’integrazione di Google Drive direttamente nel notebook, risultando utile nel caso in cui si disponga di un dataset memorizzato su Drive e si desideri utilizzarlo per condurre esperimenti. Tuttavia, il motivo predominante per l’ampio utilizzo di Colab risiede nell’hardware, RAMe GPU, che entro certi limiti mette a disposizione gratuitamente. Attualmente, la GPU rappresenta un bene prezioso nel mondo tech, poiché la maggior parte degli esperimenti di Machine/Deep Learning richiede l’impiego di tale risorsa.

Oltre a Google stanno nascendo altri fornitori di che forniscono un ecosistema creato sui notebook. Primo tra tutti Deepnote che fornisce un ecosistema costruito sui notebook che a differenza di jupyter fornisce anche l AI per la code completion come assistente di sviluppo.


Oltre a Google, stanno emergendo altri fornitori con ecosistemi basati sui notebook. Deepnote è uno dei principali, offrendo un ambiente costruito sui notebook e, a differenza di Jupyter, fornisce un’intelligenza artificiale per il completamento automatico del codice, agendo come assistente nello sviluppo.

Ma allora perchè c’è gente che non apprezza questi notebook?

IDE vs Notebook

I programmotori quando sviluppano software utilizzano degli ambiente di sviluppo integrati o IDE. Gli IDE delle applicazioni utilizzate per lo sviluppo software che agevola il lavoro di chi scrive codice. Ogni programmatore ha il suo IDE preferito, scelto in base a strumenti, estetica, facilità di utilizzo. Io ad esempio utilizzo VSCode.

Quando sviluppiamo software nel mondo AI, abbiamo bisogno di figure lavorative eterogenee, come matematici e statistici, ma alla fine quello che andiamo ha produrre è del codice. Pe questo sono dell’opinione che chi fà AI, dovrebbe seguire le comuni best practice di sviluppo che purtroppo un Notebook non ti permette di avere.

Best Practice di sviluppo

Di seguito elenco alcune delle best practice che voglio evidenziare nello sviluppo software che non si possono implementare quando utilizziamo i notebook.

Debugging

Scrivere codice che non contenga bug è utopia. Qualsiasi programmatore, anche i piu senior, scrivono codice che presentano degli errori. La bravura è nello scovarli e risolverli. Tutti gli IDE hanno dei debugger incorporati. Il debugger è uno strumento che permette ti interrompere l’esecuzione del codice sorgente in qualsiasi punto si voglia. In questo modo si puo controllare il contenuto delle variabili in un dato momento e capire meglio cosa stia succedendo, ed auspicabilmente trovare il bug!

Scrivere codice modulare

Negli Jupyter Notebooks, l’unica cosa che possiamo fare è scrivere codice una riga dopo l’altra. Spesso ritrovandoci a scrivere notebook lunghissimi. Inoltre l’ordine in cui eseguiamo le celle è importante. Nel caso in cui le celle non vengano eseguite nell’ordine previsto, il codice si rompe.

L’ IDE ci permette di dividere il codice in piu file. Ogni file (o modulo) è specializzato in qualche operazione, ad esempio possiamo avere un modulo solamente sul data pre-processing che può essere riutilizzato quante volte vogliamo importandolo in altri file.

Utilizzo dei test

Quando scriviamo una funzione, come facciamo a sapere che questa è davvero robusta? Potrebbe sembrarci di aver scritto del codice resistente che poi scopriamo essere suscettibile a particolari input da parte degli utenti. Per qusto motivo si creano dei test, cioè altre funzioni che testano una parte di codice in particolare (come una funzione o una classe) provando a romperla. Un po come uno stress test. Se il codice supera questi test, siamo abbastanza confidenti che sia scritto bene e possiamo metterlo in produzione.

Versionamento

I Notebook non sono versionabili. In programmazione si utilizzano tool come Git e GitHub, poichè il codice viene iterativamente modificato e migliorato. A volte le varie versioni possono confonderci e capita di dimenticare quale sia la migliore versione del codice. Qui git viene in nostro soccorso, perchè mantiene per noi lo storico di tutte le versioni sviluppate e possiamo cosi aprire e continuare a lavorare da qualsiasi versione preferiamo.

Non è insolito trovare data scientist che creano numerosissimi notebook intitolati “final_notebook.ipynb”, “super_final_notebook.ipynb”, “best_notebook.ipynb” etc…

Logging

Immaginate di aver scritto una pipeline di training per fare il fine-tuning del vostro large language model personale. Il fine-tuning impiega ore se non giorni. Quando tornate davanti al vostro laptop, scoprite che l’esecuzione del codice si è interrotta per qualche motivo, ma non avete idea di quale sia il motivo. Come risolvere?

All’interno del codice potete inserire dei log. Sono come dei semplici print ma molto piu customizzabili. Si possoo creare log per segnalare informazioni generali, warning, erorri e altro ancora. E si può anche customizzare il modo in cui i messaggi vengono visualizzati. Ovviamente i log possono essere messi su file, cosi che non dobbiamo stare a fissare continuamente il terminale come facciamo con i print, e al termine di un esecuzione possiamo leggere i log e avere informazioni di cosa è successo durante l’esecuzione.

Conclusione

Io contituo ad utilizzare molto i Jupyter Notebook perchè spesso li trovo estremamente utili. Ad esempio quando preparo delle lezioni di AI, cerco sempre di utilizzare Colab, in modo da condividere e presentare il mio codice facilmente agli studenti.

Sono anche utili per la prototipazione rapida. Quando voglio farmi un idea sulle capacità di un particolare modello, con un Notebook posso farlo in pochissimo tempo.

Quando si parla però di passare allo sviluppo di un software vero e proprio, secondo me bisogna cercare di passare subito all’utilizzo di un IDE abbandonando il Notebook. Ad oggi molti data scientist vengono da background scientifici come fisica e matematica, per questo non hanno familiarità con le best practice di sviluppo e rimangono nella loro confort zone utilizzando i notebook. Il mio consiglio è quello di iniziare da subito a prendere confidenza con queste best practice descritte in questo articolo per sviluppare codice che sia leggibile, riproducibile e pronto per la produzione!

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Marcello Politi 300x300
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Articoli in evidenza

Immagine del sitoCultura
Buon compleanno Bitcoin! 3 gennaio 2009: il giorno in cui un blocco ha cambiato il mondo
Massimiliano Brolli - 03/01/2026

La vera identità del creatore di Bitcoin è uno dei più grandi misteri del mondo tecnologico. Nel corso degli anni sono emerse molte teorie su chi sia veramente Satoshi Nakamoto, che spaziano tra un viaggiatore…

Immagine del sitoVulnerabilità
Le AI stanno diventando “vettori Zero-Day”! il 2026 sarà l’anno del caos digitale?
Redazione RHC - 02/01/2026

Fino a poco tempo fa, le vulnerabilità zero-day sembravano artefatti esotici provenienti dal mondo delle operazioni speciali e dello spionaggio. Ora sono uno strumento comune per hackerare le reti aziendali, e non solo perché gli…

Immagine del sitoCultura
66 anni e ancora imbattibile: come il COBOL domina silenziosamente il mondo bancario
Redazione RHC - 02/01/2026

Mentre il settore dibatte su quale rete neurale sia la “più intelligente” e quale framework sia il “più moderno”, tecnologie vecchie di decenni continuano a turbinare silenziosamente sotto la superficie del settore bancario. Quest’anno, COBOL…

Immagine del sitoCultura
Al via il corso “Cyber Offensive Fundamentals” di RHC! 40 ore in Live Class
Redazione RHC - 02/01/2026

Vuoi smettere di guardare tutorial e iniziare a capire davvero come funziona la sicurezza informatica? Se la risposta è SI, ti consigliamo di leggere questo articolo. Il panorama della sicurezza informatica cambia velocemente: nuove vulnerabilità,…

Immagine del sitoInnovazione
IA, l’allarme del Nobel Hinton: “Addio a migliaia di posti di lavoro già nel 2026”
Redazione RHC - 02/01/2026

Il professore di informatica Geoffrey Hinton, uno dei fondatori delle moderne tecnologie di intelligenza artificiale, ha affermato che l’IA potrebbe portare a perdite di posti di lavoro su larga scala già nel 2026. Secondo lui,…