Simone Raponi : 31 Luglio 2023 07:49
Nel sempre più vasto mondo dell’intelligenza artificiale (IA), esiste una tecnologia rivoluzionaria che ha cambiato il modo in cui le macchine “vedono” e “comprendono” il mondo intorno a loro: le Convolutional Neural Networks (CNN).
Questi potenti algoritmi hanno aperto nuove frontiere nelle scienze informatiche, rendendo possibile ciò che un tempo era considerato fantascienza.
Ma cosa sono esattamente le CNN e come funzionano? Preparati a scoprire tutto questo nel nostro viaggio attraverso la storia, i concetti fondamentali e le applicazioni di questa affascinante tecnologia.
Prova la Demo di Business Log! L'Adaptive SOC italiano
Log management non solo per la grande Azienda, ma una suite di Audit file, controllo USB, asset, sicurezza e un Security Operation Center PERSONALE, che ti riporta tutte le operazioni necessarie al tuo PC per tutelare i tuoi dati e informati in caso di problemi nel tuo ambiente privato o di lavoro.
Scarica ora la Demo di Business Log per 30gg
Le Convolutional Neural Networks, come molte delle migliori invenzioni dell’umanità, non sono nate in un giorno. Il loro sviluppo ha avuto inizio negli anni ’80 con il lavoro di un pioniere dell’IA, Kunihiko Fukushima, che ha sviluppato una rete neurale chiamata “Neocognitron”. Questa prima incarnazione delle CNN era rudimentale, ma ha gettato le basi per gli sviluppi futuri.
Tuttavia, il vero successo delle CNN è arrivato nel 1998, quando il ricercatore Yann LeCun ha introdotto un modello di rete neurale chiamato “LeNet-5”. Questa rete è stata utilizzata con successo per il riconoscimento di cifre scritte a mano, mostrando al mondo le incredibili potenzialità delle CNN. Da allora, grazie alla crescente disponibilità di dati e alla potenza di calcolo, le CNN sono diventate uno strumento chiave nella cassetta degli attrezzi dell’IA.
Le Convolutional Neural Networks appartengono alla famiglia delle reti neurali artificiali, un tipo di modello di apprendimento automatico che si ispira al funzionamento del cervello umano. Queste reti sono composte da neuroni artificiali o “nodi” organizzati in diversi strati.
Ciò che rende uniche le CNN è il modo in cui gestiscono le immagini. Invece di prendere un’immagine come un intero, le CNN la scompongono in parti più piccole e le analizzano strato per strato. Questo processo di “convoluzione” permette alla rete di rilevare caratteristiche locali nelle immagini, come linee, forme o colori. Queste caratteristiche vengono poi combinate nei successivi strati per riconoscere forme più complesse.
Un altro concetto fondamentale nelle CNN è il “pooling” o “subsampling”, un processo che riduce la dimensione dell’immagine mantenendo solo le informazioni più importanti. Questo rende la rete più efficiente e riduce il rischio di sovradattamento, un problema comune nell’apprendimento automatico quando il modello diventa troppo specifico per i dati di addestramento e non riesce a generalizzare bene a nuovi dati.
Le CNN includono anche strati “fully connected” o “densi”, dove ogni neurone è collegato a tutti gli altri neuroni dello strato successivo. Questi strati sono spesso usati alla fine della rete per compiere la classificazione finale, basata sulle caratteristiche rilevate dai precedenti strati convoluzionali e di pooling.
La vera forza delle Convolutional Neural Networks sta nella loro versatilità. Grazie alla loro capacità di rilevare e classificare pattern complessi nelle immagini, le CNN trovano applicazione in numerosi campi.
Riconoscimento delle immagini e della voce: Le CNN sono ampiamente utilizzate per il riconoscimento di immagini e di voce. Ad esempio, i servizi di riconoscimento facciale di Facebook o i sistemi di assistenza vocale come Siri e Alexa si basano sulle CNN.
Guida autonoma: Le CNN giocano un ruolo fondamentale nella guida autonoma. Aiutano i veicoli a “vedere” e a capire l’ambiente circostante, consentendo loro di navigare in sicurezza.
Diagnostica medica: Nel campo della medicina, le CNN stanno rivoluzionando la diagnostica. Sono utilizzate per analizzare immagini mediche, come radiografie o scansioni MRI, e possono rilevare anomalie come tumori o malattie cardiache con una precisione che rivalizza con quella dei medici umani.
Le Convolutional Neural Networks sono un potente strumento che ha rivoluzionato il campo dell’intelligenza artificiale. Hanno permesso alle macchine di “vedere” e “comprendere” il mondo in modi mai pensati prima. Ma la nostra esplorazione delle CNN è appena iniziata. Nel prossimo articolo, esploreremo più in profondità come funzionano le CNN, esaminando i dettagli tecnici dietro questi affascinanti algoritmi.
Per approfondire ulteriormente l’argomento delle Convolutional Neural Networks, vi consigliamo di consultare il corso gratuito dell’università di Stanford: Convolutional Neural Networks for Visual Recognition.
Negli ultimi giorni, il collettivo hacktivista italiano Anonymous Italia ha risposto agli attacchi informatici sferrati dal gruppo filorusso NoName057(16) colpendo una serie di obiettivi russi. Gli at...
Gruppo di ricerca MASSGRAVE ha presentato un Exploit chiamato TSforge che consente di attivare qualsiasi versione di Windows a partire da Windows 7, nonché tutte le edizioni di Microsof...
Su BreachForum un utente dallo pseudonimo EDRVendor ha venduto, dopo poche ore dall’annuncio, l’accesso ad una cassetta postale della polizia di stato italiana. Oltre alla mail viene off...
Team di intelligence sulle minacce di Google ha reso pubblica l’informazione sul gruppo di hacker Triplestrength, finora sconosciuto, attivo dal 2020. Il gruppo è composto da poc...
I canali Telegram degli hacker filorussi di NoName057(16) sono stati eliminati da telegram. Ma subito gli attivisti ricreano nuovi canali marchiati con il suffisso “reborn“. Ma...
Copyright @ 2003 – 2024 REDHOTCYBER Srl
PIVA 17898011006