Simone Raponi : 25 Luglio 2023 10:15
Oggi parliamo di tre protagonisti fondamentali nel machine learning: i set di training, validation e test. Se avete mai avuto a che fare con il machine learning, vi sarete sicuramente imbattuti in questi termini.
Ma cosa significano e, soprattutto, perché sono così importanti? Ecco a voi una guida semplice e diretta.
Il training set è dove tutto inizia. Questo set di dati viene utilizzato per addestrare il modello di machine learning, come suggerisce il nome. È il terreno di gioco principale per il nostro modello, dove apprende le regole del gioco.
Vuoi diventare un esperto del Dark Web e della Cyber Threat Intelligence (CTI)?
Stiamo per avviare il corso intermedio in modalità "Live Class", previsto per febbraio.
A differenza dei corsi in e-learning, disponibili online sulla nostra piattaforma con lezioni pre-registrate, i corsi in Live Class offrono un’esperienza formativa interattiva e coinvolgente.
Condotti dal professor Pietro Melillo, le lezioni si svolgono online in tempo reale, permettendo ai partecipanti di interagire direttamente con il docente e approfondire i contenuti in modo personalizzato.
Questi corsi, ideali per aziende, consentono di sviluppare competenze mirate, affrontare casi pratici e personalizzare il percorso formativo in base alle esigenze specifiche del team, garantendo un apprendimento efficace e immediatamente applicabile.
Non perdere i nostri corsi e scrivi subito su WhatsApp al numero
379 163 8765
per richiedere informazioni
"
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Pensa al training set come il libro di testo per un esame. Lo studi a fondo, comprendi i concetti, memorizzi i dettagli.
Il validation set è il secondo passo nel processo. Viene utilizzato per sintonizzare il modello e per evitare l’overfitting, che è quando un modello impara i dati di addestramento “a memoria”, rendendo il modello incapace di generalizzare bene su nuovi dati.
Puoi pensare al validation set come a un set di quiz basati sul tuo libro di testo. Testi quanto hai imparato e correggi il tuo metodo di studio in base ai risultati.
Il test set è l’ultimo passo nel processo di addestramento. Viene utilizzato per valutare quanto bene il modello può generalizzare su dati mai visti prima. È come l’esame finale: non hai mai visto le domande prima, e il tuo punteggio riflette quanto bene hai compreso il materiale, non solo quanto bene lo hai memorizzato.
Una nota importante è che il test set dovrebbe rappresentare il più possibile la distribuzione dei dati che il modello incontrerà nel mondo reale. Questo significa che se il tuo modello dovrà fare previsioni su dati reali con caratteristiche particolari, il tuo set di test dovrebbe riflettere queste caratteristiche il più possibile.
L’obiettivo di dividere i dati in questi tre set è di prevenire l’overfitting e stimare l’abilità del modello di generalizzare su dati nuovi e non visti.
L’addestramento solo su set di training e validation non ci dà la certezza che il nostro modello generalizzerà bene su dati reali. Ecco perché il test set è così importante. Ci permette di avere un’idea più precisa di come il modello si comporterà quando lo implementeremo nel mondo reale.
Ma attenzione, il test set può darci un’indicazione, ma ancora non ci dice tutto. La performance del modello nei confronti dei business objectives, i risultati reali che vogliamo raggiungere, può essere influenzata da molti altri fattori. Ad esempio, le condizioni del mondo reale possono cambiare in modo imprevedibile rispetto a quelle dei nostri dati di test.
In conclusione, i set di training, validation e test sono strumenti fondamentali nel processo di machine learning. Ricorda sempre di utilizzare tutti e tre per massimizzare le possibilità di successo del tuo modello!
Ma un modello ben addestrato non è sufficiente. È fondamentale monitorare costantemente le sue performance e adattarlo alle mutevoli condizioni del mondo reale. Solo così si può sperare di avvicinarsi al raggiungimento degli obiettivi di business.
Ricorda che la tua maratona di machine learning non finisce con un risultato decente su un test set. Il mondo reale è pieno di cambiamenti imprevisti e il tuo modello deve essere in grado di adattarsi per poter continuare ad essere rilevante nelle predizioni.
Nel mondo digitale odierno, dove le minacce informatiche si evolvono a un ritmo vertiginoso, la gestione efficace del tempo è diventata un elemento imprescindibile per garantire la sicurezza dei ...
Molte persone ammettono di avere difficoltà a trovare il partner giusto, quindi non c’è da stupirsi che, con l’avanzamento della tecnologia, sempre più di loro si rivolgan...
Negli ultimi giorni, DeepSeek, l’innovativa piattaforma cinese di intelligenza artificiale, è diventata il bersaglio di attacchi informatici sempre più sofisticati e aggressivi. ...
Il gruppo di hacktivisti russi OverFlame ha sferrato un nuovo attacco DDoS (Distributed Denial of Service) contro il Ministero della Difesa italiano il 30 di gennaio, segnando la seconda offensiva in ...
La scorsa settimana, la società cinese DeepSeek ha rilasciato R1, il suo nuovo modello linguistico, scatenando un’ondata di reazioni nel settore dell’intelligenza artificiale. Non s...
Copyright @ 2003 – 2024 RED HOT CYBER
PIVA 16821691009