Simone Raponi : 25 Luglio 2023 10:15
Oggi parliamo di tre protagonisti fondamentali nel machine learning: i set di training, validation e test. Se avete mai avuto a che fare con il machine learning, vi sarete sicuramente imbattuti in questi termini.
Ma cosa significano e, soprattutto, perché sono così importanti? Ecco a voi una guida semplice e diretta.
Il training set è dove tutto inizia. Questo set di dati viene utilizzato per addestrare il modello di machine learning, come suggerisce il nome. È il terreno di gioco principale per il nostro modello, dove apprende le regole del gioco.
Iscriviti GRATIS alla RHC Conference 2025 (Venerdì 9 maggio 2025)
Il giorno Venerdì 9 maggio 2025 presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terrà
la RHC Conference 2025. Si tratta dell’appuntamento annuale gratuito, creato dalla community di RHC, per far accrescere l’interesse verso le tecnologie digitali, l’innovazione digitale e la consapevolezza del rischio informatico.
La giornata inizierà alle 9:30 (con accoglienza dalle 9:00) e sarà interamente dedicata alla RHC Conference, un evento di spicco nel campo della sicurezza informatica. Il programma prevede un panel con ospiti istituzionali che si terrà all’inizio della conferenza. Successivamente, numerosi interventi di esperti nazionali nel campo della sicurezza informatica si susseguiranno sul palco fino alle ore 19:00 circa, quando termineranno le sessioni. Prima del termine della conferenza, ci sarà la premiazione dei vincitori della Capture The Flag prevista per le ore 18:00.
Potete iscrivervi gratuitamente all'evento utilizzando questo link.
Per ulteriori informazioni, scrivi a [email protected] oppure su Whatsapp al 379 163 8765
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Pensa al training set come il libro di testo per un esame. Lo studi a fondo, comprendi i concetti, memorizzi i dettagli.
Il validation set è il secondo passo nel processo. Viene utilizzato per sintonizzare il modello e per evitare l’overfitting, che è quando un modello impara i dati di addestramento “a memoria”, rendendo il modello incapace di generalizzare bene su nuovi dati.
Puoi pensare al validation set come a un set di quiz basati sul tuo libro di testo. Testi quanto hai imparato e correggi il tuo metodo di studio in base ai risultati.
Il test set è l’ultimo passo nel processo di addestramento. Viene utilizzato per valutare quanto bene il modello può generalizzare su dati mai visti prima. È come l’esame finale: non hai mai visto le domande prima, e il tuo punteggio riflette quanto bene hai compreso il materiale, non solo quanto bene lo hai memorizzato.
Una nota importante è che il test set dovrebbe rappresentare il più possibile la distribuzione dei dati che il modello incontrerà nel mondo reale. Questo significa che se il tuo modello dovrà fare previsioni su dati reali con caratteristiche particolari, il tuo set di test dovrebbe riflettere queste caratteristiche il più possibile.
L’obiettivo di dividere i dati in questi tre set è di prevenire l’overfitting e stimare l’abilità del modello di generalizzare su dati nuovi e non visti.
L’addestramento solo su set di training e validation non ci dà la certezza che il nostro modello generalizzerà bene su dati reali. Ecco perché il test set è così importante. Ci permette di avere un’idea più precisa di come il modello si comporterà quando lo implementeremo nel mondo reale.
Ma attenzione, il test set può darci un’indicazione, ma ancora non ci dice tutto. La performance del modello nei confronti dei business objectives, i risultati reali che vogliamo raggiungere, può essere influenzata da molti altri fattori. Ad esempio, le condizioni del mondo reale possono cambiare in modo imprevedibile rispetto a quelle dei nostri dati di test.
In conclusione, i set di training, validation e test sono strumenti fondamentali nel processo di machine learning. Ricorda sempre di utilizzare tutti e tre per massimizzare le possibilità di successo del tuo modello!
Ma un modello ben addestrato non è sufficiente. È fondamentale monitorare costantemente le sue performance e adattarlo alle mutevoli condizioni del mondo reale. Solo così si può sperare di avvicinarsi al raggiungimento degli obiettivi di business.
Ricorda che la tua maratona di machine learning non finisce con un risultato decente su un test set. Il mondo reale è pieno di cambiamenti imprevisti e il tuo modello deve essere in grado di adattarsi per poter continuare ad essere rilevante nelle predizioni.
Nel mondo della cybersecurity, ogni innovazione tecnologica porta con sé nuove opportunità… e gli hacker criminali sono subito pronti a trarne un loro vantaggio. pertanto ogni nuova t...
E’ stata pubblicata da Ivanti una vulnerabilità critica, che interessa i suoi prodotti Connect Secure, Pulse Connect Secure, Ivanti Policy Secure e ZTA Gateway monitorata con il codice CVE...
Di vulnerabilità con CVSS di gravità 10 se ne vedono pochissime (per fortuna), ma questa volta siamo di fronte ad una gravissima falla di sicurezza che minaccia Apache Parquet. Si tratta di ...
I fallimenti fanno parte della nostra vita, quanti di noi ne ha avuti e quanti ne continueremo avere? Oggi parliamo di un codice, un codice semplice snello e schietto, il codice 404. Scopriremo che no...
La notizia è stata anticipata da politico.eu: a partire da maggio 2025, la Commissione von der Leyen revisionerà il GDPR introducendo semplificazioni. Certo, non sarebbe male pubblicare prim...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006