Francesco Conti : 4 Agosto 2023 08:20
L’Intelligenza Artificiale (IA) sta rivoluzionando in modo profondo il nostro modo di interagire con il mondo, apportando significative trasformazioni in diversi settori. Dalla medicina alla finanza, dall’automazione industriale alla sicurezza informatica, l’IA promette di plasmare il nostro futuro.
Dietro questa rivoluzione ci sono diverse figure professionali che lavorano per sviluppare sistemi di IA e rendere possibile la loro integrazione in prodotti d’uso quotidiano.
Dai ricercatori, che danno vita a nuovi algoritmi e modelli all’avanguardia, agli ingegneri, che sviluppano sistemi di apprendimento automatico scalabili e affidabili, fino agli esperti etici, che si occupano delle implicazioni sociali e morali dell’IA, ognuno di questi professionisti svolge un ruolo unico e indispensabile nel plasmare l’evoluzione dell’IA.
Vuoi diventare un Ethical Hacker?
Non perdere i nostri corsi e scrivi subito su WhatsApp al numero
375 593 1011
per richiedere informazioni dicendo che hai trovato il numero sulle pagine di Red Hot Cyber
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
In questo articolo approfondiremo le fondamentali differenze di ruoli e competenze tra i professionisti del settore, con particolare attenzione per le figure del Machine Learning Engineer, Data Scientist e Data Engineer.
I Data Scientist combinano i campi della statistica, del Machine Learning (ML) e della programmazione, con una certa conoscenza di dominio nel settore operativo di riferimento. I Data Scientist utilizzano queste competenze per costruire modelli che aiutano aziende e organizzazioni a estrapolare informazioni e fare previsioni. Le competenze chiave:
I Machine Learning Engineer implementano e gestiscono modelli di ML in produzione. Un ML Engineer prende i modelli (statistici o di machine learning) sviluppati dai data scientist e li trasforma in un sistema di produzione attivo. Gli ML engineer hanno compentenze molto simili agli ingegneri del software con due competenze aggiuntive:
. Le competenze chiave per questo ruolo sono:
I Data Engineer configurano l’infrastruttura su cui i Data Scientist e i ML Engineer svolgono il loro lavoro. Sono responsabili della gestione dello storage dei dati e del loro trasporto per l’utilizzo richiesto. Gli ingegneri dei dati sono principalmente ingegneri del software specializzati nelle pipeline di dati e si assicurano che i dati fluiscano dove, quando e come sia necessario affinché questi modelli funzionino correttamente. Non è necessario che comprendano i modelli di ML nel modo in cui lo fanno i data scientist. Le competenze chiave:
NLP Specialist: Data Scientist e ML Engineer che hanno sviluppato una verticalizzazione su task di elaborazione del testo sono spesso denominati NLP (Natural Languagge Processing) Specialist o Engineer. Addestrano modelli NLP per compiti come analisi del sentiment, traduzione automatica e riconoscimento di entità e integrano tali modelli in applicazioni e sistemi.
Computer Vision Engineer: i professionisti in campo AI che lavorano quotidianamente con immagini e video, per task come la classificazione o il riconoscimento di immagini oppure il tracking di oggetti in video. Le competenza per queste professioni sono simili al ML Engineer, ma con particolare interesse per le librerie di elaborazione delle immagini, come OpenCV.
Ricercatori IA: si concentrano sull’ideazione, lo sviluppo e l’implementazione di nuovi algoritmi, modelli e tecniche di machine learning per affrontare problemi complessi. Il loro obiettivo è quello di avanzare nella conoscenza e nel campo dell’IA, contribuendo a migliorare le prestazioni dei sistemi esistenti e a sviluppare nuove applicazioni e innovazioni tecnologiche.
Prompt Engineer: è un esperto che si dedica a progettare e ottimizzare prompt per LLM. Un prompt è una frase o un pezzo di testo fornito al modello di linguaggio per guidarne l’output in modo specifico. Il compito del prompt enginner è creare prompt chiari e appropriati per guidare il modello verso risposte accurate e coerenti. In sintesi, il suo ruolo è ottimizzare l’efficacia del modello attraverso il design dei prompt.
Oltre i professionisti tecnici, anche altri esperti contribuiscono allo sviluppo di servizi basati su IA: gli esperti di etica e gli esperti legali.
Mentre gli esperti etici si concentrano sull’adozione responsabile dell’IA e sulla considerazione degli impatti sociali, gli esperti legali si occupano di garantire la conformità legale e la gestione dei rischi associati all’implementazione dell’IA. Lavorando insieme, entrambi i gruppi contribuiscono a un’adozione più responsabile e sostenibile dell’IA nelle aziende.
Questo articolo offre una panoramica riguardo le figure lavorative nel mondo dell’Intelligenza Artificiale. Da un lato, abbiamo esplorato le principali figure tecniche, come data scientist e sviluppatori di algoritmi, fondamentali nell’implementazione e ottimizzazione dei sistemi IA. Dall’altro, ci siamo soffermati sugli esperti di etica e legali, cruciali per garantire un utilizzo responsabile e conforme alle normative vigenti.
È importante sottolineare che il mercato del lavoro nell’IA è in continua evoluzione. Le competenze richieste sono in costante mutamento, rispondendo all’innovazione tecnologica e alle esigenze del mercato. Quindi, aspiranti e professionisti consolidati devono essere aperti all’apprendimento continuo per restare competitivi. L’IA offre opportunità in diversi settori industriali, ma richiede impegno nel miglioramento delle competenze. Mantenere una mentalità aperta all’apprendimento è la chiave per prosperare in questo campo in continua evoluzione.
Copyright @ 2003 – 2024 RED HOT CYBER
PIVA 16821691009