Marcello Politi : 14 Dicembre 2023 09:50
Ad oggi, i large language models (LLMs) hanno dimensioni enormi e inoltre vengono utilizzati in molti software per permettere agli utenti di compiere azioni utilizzando semplicemente il linguaggio naturale.
Le recenti ricerche sull’intelligenza artificiale hanno dimostrato che i modelli linguistici di grandi dimensioni hanno buone capacità di generalizzazione permettendoci di utilizzare lo zero-shot learning, cioè poter chiedere al modello di risolvere un task per il quale non è stato addestrato.
Pensate che un modello come PaLM ha un totale di 540 miliardi di parametri, e questo non è neanche tra i modelli più grandi di oggi! Molte aziende desiderano utilizzare questi LLM e personalizzarli in base ai propri casi d’uso. Il problema è che utilizzare questi modelli in produzione in modo indipendente non è sempre fattibile in termini di costi e di hardware disponibile.
Prompt Engineering & Sicurezza: diventa l’esperto che guida l’AIVuoi dominare l’AI generativa e usarla in modo sicuro e professionale? Con il Corso Prompt Engineering: dalle basi alla cybersecurity, guidato da Luca Vinciguerra, data scientist ed esperto di sicurezza informatica, impari a creare prompt efficaci, ottimizzare i modelli linguistici e difenderti dai rischi legati all’intelligenza artificiale. Un percorso pratico e subito spendibile per distinguerti nel mondo del lavoro. Non restare indietro: investi oggi nelle tue competenze e porta il tuo profilo professionale a un nuovo livello. Guarda subito l'anteprima gratuita del corso su academy.redhotcyber.com Contattaci per ulteriori informazioni tramite WhatsApp al 375 593 1011 oppure scrivi a [email protected] ![]() Supporta RHC attraverso:
Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì. |
In un recente paper di Google AI, “Distilling Step by Step”, gli autori propongono un approccio per distillare la conoscenza di modelli di grandi dimensioni (540B PaLM) in uno molto più piccolo (770M-T5, 6GB RAM). La tecnica del distilling in generale consiste nell’utilizzare un modello molto grande per insegnare ad un modello più piccolo di comportarsi allo stesso modo. In questo modo potremo mettere in produzione solamente il modello più piccolo con prestazioni di poco inferiori.
Esistono due metodi principale che vengono utilizzati per customizzare un LLM a un caso d’uso specifico:
Nel paper, gli autori riformulano il problema della distillazione della conoscenza come un problema multi-task, utilizzando la generazione di rationale nella fase di addestramento.
Nello specifico l’apprendimento multi-task è un paradigma di apprendimento in cui il modello impara a svolgere più compiti/produrre più output simultaneamente al momento dell’addestramento (nel nostro caso label e rationale). Questo modello viene addestrato utilizzando una funzione loss che compone le loss di ogni singolo task:
C’è un grande interesse per le tecniche che permettono di ridurre le risorse necessarie per l’esecuzione di nuovi modelli di Machine Learning. In letteratura scientifica possiamo trovare diversi metodi per la compressione di tali modelli. Tra i più importanti abbiamo:
Se vi è piaciuto questo articolo, potreste essere interessati a saperne di più riguardo le tecniche di compressione quindi vi proprongo un mio recente articolo: Ottimizzare Modelli di Deep Learning in produzione.
Se volete implementare la distillazione della conoscenza o altre tecniche, potete consultare le seguenti librerie:
ShinyHunters è un gruppo noto per il coinvolgimento in diversi attacchi informatici di alto profilo. Formatosi intorno al 2020, il gruppo ha guadagnato notorietà attraverso una serie di attacchi mir...
La notizia è semplice, la tecnologia no. Chat Control (CSAR) nasce per scovare CSAM e dinamiche di grooming dentro le piattaforme di messaggistica. La versione “modernizzata” rinuncia alla backdo...
A cura di Luca Stivali e Olivia Terragni. L’11 settembre 2025 è esploso mediaticamente, in modo massivo e massiccio, quello che può essere definito il più grande leak mai subito dal Great Fir...
Una violazione di dati senza precedenti ha colpito il Great Firewall of China (GFW), con oltre 500 GB di materiale riservato che è stato sottratto e reso pubblico in rete. Tra le informazioni comprom...
Negli ultimi anni le truffe online hanno assunto forme sempre più sofisticate, sfruttando non solo tecniche di ingegneria sociale, ma anche la fiducia che milioni di persone ripongono in figure relig...