Redazione RHC : 7 Maggio 2023 09:51
Gli scienziati della Stanford University in un loro lavoro hanno affermato che è troppo presto per considerare i grandi modelli linguistici come un “gigantesco salto di opportunità”. Secondo gli esperti, le capacità di sviluppo dell’intelligenza artificiale sono un’illusione delle persone che ci lavorano.
I ricercatori ritengono che quando si analizzano i risultati di un modello per un’attività particolare, una persona possa scegliere una metrica che porti alla conclusione di “superpotere AI o un’altra metrica che non lo fa”.
Gli scienziati di Stanford hanno studiato i risultati del lavoro con GPT-3 e hanno scoperto che i superpoteri nell’intelligenza artificiale compaiono solo quando vengono utilizzate determinate metriche.
Iscriviti GRATIS ai WorkShop Hands-On della RHC Conference 2025 (Giovedì 8 maggio 2025)
Il giorno giovedì 8 maggio 2025 presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terranno i workshop "hands-on", creati per far avvicinare i ragazzi alla sicurezza informatica e alla tecnologia. Questo anno i workshop saranno:
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
La scelta di una dimensione “non lineare” o “discontinua” può portare a quello che sembra essere un cambiamento brusco e imprevedibile, che viene poi erroneamente considerato un’abilità emergente.
In effetti, la curva delle prestazioni è andata crescendo gradualmente per tutto questo tempo, senza fare “salti da gigante”. Quando i ricercatori hanno cambiato la misurazione dei risultati da una metrica non lineare a una lineare, lo sviluppo del modello è diventato prevedibile e fluido, escludendo le abilità emergenti.
Ad esempio, l’abilità GPT-3 è stata assegnata per eseguire compiti aritmetici con numeri interi, vale a dire l’aggiunta di due numeri interi a cinque cifre. Secondo i ricercatori, molte persone credono che i piccoli modelli non possano svolgere tale compito. Ma dopo aver raggiunto una certa scala, l’intelligenza artificiale è improvvisamente diventata brava ad aggiungere numeri. Questo dà motivo di preoccupazione.
Ad esempio, potresti avere un modello che “si comporta bene ed è affidabile”, ma se addestri un altro modello con molti dati o molti parametri, può diventare tossico, fuorviante o dannoso in modo imprevedibile.
Gli scienziati hanno notato che non esiste un enorme salto di opportunità. Quando gli esperti hanno rivisto le metriche utilizzate per la valutazione, hanno scoperto che i modelli linguistici espandono le loro capacità in modo graduale e prevedibile.
All’interno del Patch Tuesday di marzo è stata inclusa la CVE-2025-24983, una Vulnerabilità di elevazione dei privilegi del sottosistema kernel Win32 di Microsoft Windows. La Cybersec...
Giovedì 8 maggio, la Red Hot Cyber Conference 2025 ospiterà un’intera giornata dedicata ai ragazzi con i Workshop Hands-on (organizzati in collaborazione con Accenture Italia). Si tra...
Nelle ricognizioni nel mondo dell’underground e dei gruppi criminali svolte dal laboratorio di intelligence delle minacce DarkLab di Red Hot Cyber, ci siamo imbattuti all’interno di un D...
Nella giornata di oggi, la banda di criminali informatici di FUNKSEC rivendica all’interno del proprio Data Leak Site (DLS) un attacco informatico all’università italiana di Modena ...
L’attacco informatico a X, il social network di Elon Musk, ha scatenato una vera e propria caccia ai responsabili. Dopo le dichiarazioni dello stesso Musk, che ha attribuito l’attacco a ...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006