Simone Raponi : 20 Luglio 2023 11:20
L’intelligenza artificiale (IA) sta diventando sempre più pervasiva nella nostra vita quotidiana, influenzando settori come la sanità, l’automazione industriale, i trasporti e molto altro ancora. Tuttavia, una delle principali sfide che affrontiamo nell’adozione dell’IA è la sua mancanza di trasparenza e comprensibilità.
Spesso, i modelli di intelligenza artificiale agiscono come una “scatola nera”, rendendo difficile comprendere il motivo per cui prendono determinate decisioni. Per superare questa limitazione, è emerso il concetto di Explainable AI (XAI), che mira a rendere l’IA interpretabile e spiegabile agli esseri umani. In questo articolo, esploreremo i concetti chiave di XAI e le sue implicazioni nel mondo reale.
L’Explainable AI (XAI) è un campo di ricerca interdisciplinare che si concentra sullo sviluppo di tecniche e approcci per rendere le decisioni e i risultati dei modelli di intelligenza artificiale comprensibili agli esseri umani. L’obiettivo principale è quello di superare l’opacità delle “scatole nere” dell’IA e fornire spiegazioni chiare, trasparenti e intuitive su come l’IA giunge a una determinata conclusione o decisione.
Vorresti toccare con mano la Cybersecurity e la tecnologia? Iscriviti GRATIS ai WorkShop Hands-On della RHC Conference 2025 (Giovedì 8 maggio 2025)
Se sei un ragazzo delle scuole medie, superiori o frequenti l'università, oppure banalmente un curioso di qualsiasi età, il giorno giovedì 8 maggio 2025 presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terranno i workshop "hands-on", creati per far avvicinare i ragazzi alla sicurezza informatica e alla tecnologia. Questo anno i workshop saranno:
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
La trasparenza e l’interpretabilità dell’IA rivestono un ruolo fondamentale in diversi settori. Ad esempio, nell’ambito sanitario, dove le decisioni prese da algoritmi di IA possono influenzare direttamente la vita delle persone, è essenziale comprendere il motivo per cui un certo trattamento o diagnosi è stato suggerito. Inoltre, l’XAI può aiutare a identificare potenziali pregiudizi o discriminazioni presenti nei modelli di IA, consentendo di adottare misure correttive e garantire l’equità.
Esistono diversi approcci per rendere l’IA interpretabile. Vediamo alcuni dei principali:
Ecco alcune risorse utili per approfondire l’argomento dell’Explainable AI:
L’Explainable AI (XAI) è un campo in rapida crescita che mira a rendere l’IA comprensibile e spiegabile agli esseri umani. Questo approccio è fondamentale per garantire che l’IA sia affidabile, equa ed etica.
Attraverso l’uso di modelli interpretabili, visualizzazioni dei dati, saliency maps e regole decisionali, siamo in grado di comprendere meglio le decisioni prese dai modelli di IA e affrontare le sfide dell’opacità. L’XAI promette di portare l’IA dal regno delle “scatole nere” a uno strumento trasparente e comprensibile che può essere utilizzato con fiducia e consapevolezza.
Nel mondo della cybersecurity, ogni innovazione tecnologica porta con sé nuove opportunità… e gli hacker criminali sono subito pronti a trarne un loro vantaggio. pertanto ogni nuova t...
E’ stata pubblicata da Ivanti una vulnerabilità critica, che interessa i suoi prodotti Connect Secure, Pulse Connect Secure, Ivanti Policy Secure e ZTA Gateway monitorata con il codice CVE...
Di vulnerabilità con CVSS di gravità 10 se ne vedono pochissime (per fortuna), ma questa volta siamo di fronte ad una gravissima falla di sicurezza che minaccia Apache Parquet. Si tratta di ...
I fallimenti fanno parte della nostra vita, quanti di noi ne ha avuti e quanti ne continueremo avere? Oggi parliamo di un codice, un codice semplice snello e schietto, il codice 404. Scopriremo che no...
La notizia è stata anticipata da politico.eu: a partire da maggio 2025, la Commissione von der Leyen revisionerà il GDPR introducendo semplificazioni. Certo, non sarebbe male pubblicare prim...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006