Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
970x20 Itcentric
TM RedHotCyber 320x100 042514
Le Trappole Nascoste dell’Intelligenza Artificiale Generativa: Allucinazioni e Bias negli LLM, come mitigarli?

Le Trappole Nascoste dell’Intelligenza Artificiale Generativa: Allucinazioni e Bias negli LLM, come mitigarli?

Marcello Politi : 24 Novembre 2023 07:24

Ormai tutti parlano di AI generativa e Large Language Models. Modelli come chatGPT e Grok sono oggi sulla bocca di tutti, e sono molte le persone che vogliono adottare soluzioni basati su queste tecnologie per migliorare i loro business.

C’è però da dire, che sebbene le capacità linguistiche di questi modelli siano impressionanti, sono ancora ben lontati dall’essere perfetti, anzi, ci sono molti problemi importanti che ancora non riusciamo a risolvere.

Gli LLM come tutti i modelli di Machine/Deep learning imparano dai dati. Non si può quindi fuggire alla regola garbage in garbage out. Cioè se addestriamo i modelli su dati di bassa qualità, la qualità dell’output nel momento di inferenza sarà altrettanto bassa.

Fonte del problema


Cve Enrichment Redhotcyber

CVE Enrichment
Mentre la finestra tra divulgazione pubblica di una vulnerabilità e sfruttamento si riduce sempre di più, Red Hot Cyber ha lanciato un servizio pensato per supportare professionisti IT, analisti della sicurezza, aziende e pentester: un sistema di monitoraggio gratuito che mostra le vulnerabilità critiche pubblicate negli ultimi 3 giorni dal database NVD degli Stati Uniti e l'accesso ai loro exploit su GitHub.

Cosa trovi nel servizio:
✅ Visualizzazione immediata delle CVE con filtri per gravità e vendor.
✅ Pagine dedicate per ogni CVE con arricchimento dati (NIST, EPSS, percentile di rischio, stato di sfruttamento CISA KEV).
✅ Link ad articoli di approfondimento ed exploit correlati su GitHub, per ottenere un quadro completo della minaccia.
✅ Funzione di ricerca: inserisci un codice CVE e accedi subito a insight completi e contestualizzati.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Questi modelli di linguaggio in particolare sono stati addestrati sui testi di tutto il web, da Wikipedia fino alle pagine piu sconosciute, e a scrivere quei testi sono stati gli umani. Noi umani non essendo degli automi scriviamo introducento nei testi anche inconsciamente dei bias, come una tendenza verso un determinato partito politico, o nel caso peggiore vengono scritti pensieri razzisti o sessisti e chi piu ne ha più ne metta.

Questo rappresenta il motivo principale per cui, durante le conversazioni con gli LLM, si verificano risposte che presentano dei pregiudizi (o bias). Molte volte, quando si chiede a questi modelli quali siano i lavori più comuni per gli uomini, essi rispondono con avvocato o ingegnere, mentre per le donne, rispondono con prostituta o donna delle pulizie.

Esempio di gender bias in chatGPT

Oltre ai bias, ci troviamo di fronte anche al problema delle allucinazioni. Questi modelli tendono a fornire sempre una risposta all’utente, anche quando non sono in grado di farlo. Invece di dichiarare un semplice “non lo so”, generano una risposta chiaramente falsa, ma con tale sicurezza che risulta complicato per un utente distinguere tra una risposta genuina e una fittizia. In tal modo, si potrebbe affermare che contribuiscono alla diffusione di notizie false.

Come affrontare il problema?

Credo che sia chiaro ormai, che non è possibile mettere in commercio un LLM addestrato su tutto il web senza prendere delle precauzioni. Fortunatamente ci sono delle tecniche che ci permettono di mitigare i problemi di bias e allucinazioni.

In fase di inferenza gli esperti di AI possono tunare dei parametri importanti degli LLM che adesso vedremo in breve.

  • Temperature: un valore alto di temperature favorisce la randomness nella risposta e la creatività, mentre valori bassi rendono l’output più deterministico.
  • Frequency Penalty : incrementando questo valore il modello cercherà di utilizzare più spesso gli stessi token (o stesse sillabe se volete).
  • Presence Penalty: un valore piu alto di questo paramentro aumenta la probabilità di generale token ancora non presenti nel testo generato.
  • Top-p: questo parametro imposta una soglia cumulativa di probabilità, conservando i token con una probabilità complessiva al di sopra di essa.

Un altro modo comune per avere più controllo sull’output degli LLM è quello di utilizzare tecniche di Prompt Engineering. Ad oggi è molto importante saper fare la domanda giusta ai modelli di AI. A seconda di come una cosa viene chiesta potremmo ottenere una risposta più o meno corretta.

Ad esempio con la capacità dei modelli di essere few shot learners, possiamo includere nella query degli esempi di domande simili e risposte attese, prima di porre la nostra domanda.

Few Shot prompting

Un altra tecnica è quella chiamata chain of thoughts (CoT). In questa modalità si chiede al modello di ragionare sul perche della risposta, in questo modo le sue capacità aumentato.

Chain of Thoughts prompting

Un’altro metodo che viene molto usato oggi è quello di utilizzare il framework chiamato Retrieval Augmented Generation (RAG). Nel RAG, viene fornito al modello una collezione di documenti, scelti a priori, da cui il modello potrà attingere informazioni per rispondere fornendo oltre al testo generato anche la risorsa che ha usato per generare tale risposta. Semplicemente l’LLM vede quali documenti sono semanticamente simili alla query ricevuta e si basa su quelli per generare la risposta.

Retrieval Augmented Generation

L’utlimo metodo che vediamo, è stato usato per modelli come GPT, ma è anche il più complicato da implementare. Con questo metodo viene fatto un ulteriore step di training del modello, in cui quindi a differenza dei metodi precedenti vengono aggiurnati i pesi del modello sottostante.

Prima di mettere un LLM in commercio, viene eseguito una fase chiamate reinforcement learning from human feedback (RLHF). In questo caso, ci sono degli annotatori umani, che dicono quanto la generazione del modello sia allineata con i goal umani, cioè quelli di non essere biased e non allucinare. Ovviamente anche qui ci sono delle complicazioni, perchè persone diverse potrebbero avere idee diverse su cosa giudicare giusto o sbagliato.

Ma ad oggi questo meccanismo ha portato a molti benefici in questo senso. Ovviamente essendo una fase di addestramento supervisionato dall’uomo, è un training lento e costoso. Ultimamente si è iniziato a studiare un training simile chiamato reinforcement learning from AI feedback (RLAIF). In questo framework, a dare un giudizio sull’output dell’AI è una AI stessa. Sembra impossibile ma i risultati ottenuti da questo studio sembrano promettenti sebbene ancora peggiori del RLHF.

Conclusioni

In questo articolo abbiamo affrontato il problema di bias e allucinazioni degli LLM e capito da cosa derivano. Esistono varie tecniche usate per mitigare questi problemi, alcune usate in fase di inferenza altre invece in fase di training. Si sta facendo molta ricerca in questo senso, perchè gli LLM sono sempre più parte integrante della vita di tutti i giorni.

Ho lavorato con scuole che vogliono integrare gli LLM per un aiuto allo studio, o chi sta sviluppando LLM che possano occuparsi in modo autonomo del customer service. Sebbene tutti questi servizi sembrano teoricamente strabilianti bisogna non lasciarsi prendere dall’hype ma essere consci ancora dei limiti attuali di queste tecnologie.

Immagine del sitoMarcello Politi
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Simulazioni di Phishing: 5 consigli per evitare i falsi positivi dal CERT-AgID
Di Redazione RHC - 26/11/2025

Sempre più amministrazioni avviano simulazioni di campagne di phishing per misurare la capacità dei propri dipendenti di riconoscere i messaggi sospetti. Quando queste attività coinvolgono struttur...

Immagine del sito
WormGPT e KawaiiGPT Migliorano! Le “AI del male” sono un’arma per i cybercriminali
Di Redazione RHC - 26/11/2025

I criminali informatici non hanno più bisogno di convincere ChatGPT o Claude Code a scrivere malware o script per il furto di dati. Esiste già un’intera classe di modelli linguistici specializzati...

Immagine del sito
L’Europa si ribella: “Basta Microsoft”. Il Parlamento punta alla sovranità tecnologica
Di Redazione RHC - 26/11/2025

Un gruppo di membri del Parlamento europeo hanno chiesto di abbandonare l’uso interno dei prodotti Microsoft e di passare a soluzioni europee. La loro iniziativa nasce dalle crescenti preoccupazioni...

Immagine del sito
Shakerati Anonimi: la storia di Marco e il “prezzo” della Fiducia
Di Redazione RHC - 26/11/2025

Ciao a tutti… mi chiamo Marco, ho 37 anni e lavoro come impiegato amministrativo in uno studio commerciale. È la prima volta che parlo davanti a tutti voi e sono un pò emozionato … e vi assicuro...

Immagine del sito
Gli USA puntano tutto sulla “scienza automatica”. Al via la Missione Genesis: più AI e meno persone
Di Redazione RHC - 26/11/2025

Il presidente degli Stati Uniti Donald Trump ha firmato un ordine esecutivo, “Launching the Genesis Mission”, che avvia un programma nazionale per l’utilizzo dell’intelligenza artificiale nell...