Redazione RHC : 12 Novembre 2023 09:30
Recentemente avevamo parlato del fatto che l’intelligenza artificiale, una volta che utilizzerà i propri dati per alimentarsi, avrebbe potuto perdere di qualità e precisione. Una nuova ricerca inizia a prendere in considerazione il fatto che tra qualche anno, i dati prodotti dagli umani inizieranno a scarseggiare.
Questo determinerà meno informazioni per le IA ma anche un problema da risolvere da parte degli scienziati.
L’intelligenza artificiale (AI), che ha raggiunto l’apice della popolarità, deve far fronte alla mancanza di dati di addestramento necessari per il suo funzionamento. Ciò potrebbe rallentare lo sviluppo di modelli di intelligenza artificiale. In particolare di modelli linguistici di grandi dimensioni, e persino cambiare il corso della rivoluzione dell’intelligenza artificiale.
Vorresti toccare con mano la Cybersecurity e la tecnologia? Iscriviti GRATIS ai WorkShop Hands-On della RHC Conference 2025 (Giovedì 8 maggio 2025)
Se sei un ragazzo delle scuole medie, superiori o frequenti l'università, oppure banalmente un curioso di qualsiasi età, il giorno giovedì 8 maggio 2025 presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terranno i workshop "hands-on", creati per far avvicinare i ragazzi alla sicurezza informatica e alla tecnologia. Questo anno i workshop saranno:
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
L’addestramento di algoritmi IA potenti e accurati richiede grandi quantità di dati. Ad esempio, ChatGPT è stato addestrato su 300 miliardi di parole. Allo stesso modo, DALL-E, Lensa e Midjourney sono stati addestrati su set di dati LIAON-5B contenente 5,8 miliardi di coppie immagine-testo. Se un algoritmo viene addestrato su dati insufficienti, potrebbe produrre risultati imprecisi o di bassa qualità.
La ricerca mostra che il patrimonio di dati di Internet sta crescendo molto più lentamente rispetto ai set di dati utilizzati per addestrare l’intelligenza artificiale.
L’anno scorso, un gruppo di ricercatori ha previsto che i dati testuali di qualità si esauriranno entro il 2026. Questa previsione è state definita sulla base delle attuali tendenze di formazione dell’IA continueranno. Si stima inoltre che i dati linguistici di bassa qualità si esauriranno tra il 2030 e il 2050. Inoltre le immagini di bassa qualità si esauriranno tra il 2030 e il 2060. La mancanza di dati utilizzabili potrebbe rallentare lo sviluppo dell’intelligenza artificiale. Questo mentre si prevede che l’economia AI contribuirà fino a 15,7 trilioni di dollari all’economia globale entro il 2030.
Tuttavia, ci sono modi per risolvere il problema della carenza di dati.
Una possibilità è migliorare gli algoritmi di intelligenza artificiale per utilizzare meglio i dati esistenti. Nei prossimi anni, gli sviluppatori saranno probabilmente in grado di addestrare sistemi di IA utilizzando meno dati e forse meno potenza di calcolo. Ciò contribuirà anche a ridurre l’impronta di carbonio dell’intelligenza artificiale.
Un’altra opzione è utilizzare l’intelligenza artificiale per creare dati sintetici per addestrare i sistemi. Gli sviluppatori possono semplicemente generare i dati necessari adatti al loro modello di intelligenza artificiale specifico. Diversi progetti utilizzano già contenuti sintetici, spesso ottenuti da servizi di generazione dati. Questo diventerà più comune in futuro
Il ransomware HellCat è apparso nella seconda metà del 2024 e ha attirato l’attenzione degli analisti grazie all’umorismo delle sue dichiarazioni pubbliche. Ricordiamo l’...
Il 28 marzo 2025, un utente del noto forum di cybersecurity BreachForums, con lo pseudonimo ThinkingOne, ha rivelato quello che potrebbe essere il più grande data breach mai registrato nel mondo ...
Quando Jeffrey Goldberg dell’Atlantic ha fatto trapelare accidentalmente un messaggio di gruppo privato di alti funzionari statunitensi su un possibile attacco contro gli Houthi nello Yemen, ha...
Ogni mese diventa sempre più evidente: le password non funzionano più. Gli hacker hanno imparato a eludere anche la protezione a due fattori sfruttando sessioni rubate e milioni di dati comp...
La pseudonimizzazione è una tecnica di protezione dei dati definita dall’art. 4(5) del GDPR. Consiste nella trasformazione dei dati personali in modo tale che non possano più essere a...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006