Simone Raponi : 2 Agosto 2023 22:22
Dopo aver esaminato le basi e l’architettura delle Convolutional Neural Networks (CNN) nei nostri precedenti articoli, ora è il momento di addentrarci nel processo di addestramento di queste affascinanti reti. In questo articolo, discuteremo la backpropagation, il metodo che le reti neurali utilizzano per apprendere dai dati, e presenteremo vari algoritmi di ottimizzazione utilizzati per migliorare l’efficienza e la precisione dell’apprendimento.
La backpropagation è il motore che permette alle reti neurali di apprendere dai dati. Questo metodo, derivato dal calcolo differenziale, permette alla rete di aggiustare i suoi pesi e bias in modo da minimizzare la differenza tra le sue previsioni e i dati reali.
Iniziamo con una fase chiamata “feedforward”, durante la quale i dati vengono passati attraverso la rete, strato per strato, fino a produrre una previsione. Poi, la rete calcola una funzione di costo (o perdita), che misura quanto le sue previsioni differiscono dai dati reali. Infine, nella fase di backpropagation, la rete calcola il gradiente della funzione di costo rispetto ai suoi pesi e bias e li aggiorna di conseguenza.
Prova la Demo di Business Log! L'Adaptive SOC italiano
Log management non solo per la grande Azienda, ma una suite di Audit file, controllo USB, asset, sicurezza e un Security Operation Center PERSONALE, che ti riporta tutte le operazioni necessarie al tuo PC per tutelare i tuoi dati e informati in caso di problemi nel tuo ambiente privato o di lavoro.
Scarica ora la Demo di Business Log per 30gg
La funzione di costo è una misura di quanto le previsioni della rete differiscono dai dati reali. Le funzioni di costo più comunemente utilizzate nelle CNN includono la cross-entropy per i problemi di classificazione e l’errore quadratico medio (Mean Squared Error, MSE) per i problemi di regressione.
In entrambi i casi, l’obiettivo della backpropagation è minimizzare il valore della funzione di costo aggiustando i pesi e i bias della rete. In altre parole, l’obiettivo è trovare la combinazione di pesi e bias che rende le previsioni della rete il più vicino possibile ai dati reali.
Il gradient descent è l’algoritmo più semplice e più utilizzato per minimizzare la funzione di costo. L’idea di base è quella di cambiare i pesi e i bias della rete in direzione opposta al gradiente della funzione di costo. Questo processo viene ripetuto per un certo numero di volte (o “epoche“), fino a quando la rete non riesce più a migliorare significativamente le sue previsioni.
Il gradient descent, tuttavia, non è l’unico algoritmo di ottimizzazione disponibile per le reti neurali. Negli ultimi anni, i ricercatori hanno sviluppato una serie di algoritmi di ottimizzazione avanzati che cercano di risolvere alcuni dei problemi associati al gradient descent.
Alcuni di questi algoritmi, come il gradient descent with Momentum, Adagrad e Adam, utilizzano tecniche avanzate come l’adattamento del learning rate e la media mobile dei gradienti per accelerare l’apprendimento e migliorare la precisione delle previsioni della rete.
Oltre ai problemi di ottimizzazione, le reti neurali devono anche affrontare il problema dell’overfitting e dell’underfitting. L’overfitting si verifica quando la rete si adatta troppo bene ai dati di addestramento e perde la sua capacità di generalizzare a nuovi dati. D’altra parte, l’underfitting si verifica quando la rete non è in grado di catturare adeguatamente i pattern nei dati di addestramento.
Per combattere l’overfitting e l’underfitting, i ricercatori hanno sviluppato una serie di tecniche di regolarizzazione, come la regolarizzazione L1 e L2, il dropout e l’early stopping. Queste tecniche possono aiutare a prevenire l’overfitting riducendo la complessità del modello o introducendo un certo grado di “rumore” nel processo di addestramento.
Infine, dopo aver addestrato la nostra rete e averla ottimizzata per prevenire l’overfitting e l’underfitting, è il momento di affinare i dettagli. Questo è il ruolo dell’Hyperparameter Tuning, un processo che coinvolge l’aggiustamento di vari parametri della rete, come il learning rate, il numero di epoche, la dimensione del batch e così via.
L’addestramento e l’ottimizzazione di una Convolutional Neural Network sono un processo complesso e multiforme che richiede una solida comprensione dei principi fondamentali dell’apprendimento automatico e delle reti neurali. Tuttavia, con una conoscenza adeguata dei metodi di addestramento e di ottimizzazione, le CNN possono diventare strumenti potenti per l’elaborazione e l’analisi di immagini e altri dati visivi.
Grazie per aver letto questa serie di articoli sulle Convolutional Neural Networks. Speriamo che vi sia stata utile e vi abbia dato un’idea di come funzionano queste incredibili architetture di apprendimento automatico.
Per ulteriori approfondimenti
In un recente scambio con l’intelligenza artificiale Grok 3, è emerso un tema delicato e controverso: la pena di morte e chi, tra le persone viventi oggi in America, potrebbe meritarla per...
Negli ultimi giorni, il collettivo hacktivista italiano Anonymous Italia ha risposto agli attacchi informatici sferrati dal gruppo filorusso NoName057(16) colpendo una serie di obiettivi russi. Gli at...
Gruppo di ricerca MASSGRAVE ha presentato un Exploit chiamato TSforge che consente di attivare qualsiasi versione di Windows a partire da Windows 7, nonché tutte le edizioni di Microsof...
Su BreachForum un utente dallo pseudonimo EDRVendor ha venduto, dopo poche ore dall’annuncio, l’accesso ad una cassetta postale della polizia di stato italiana. Oltre alla mail viene off...
Team di intelligence sulle minacce di Google ha reso pubblica l’informazione sul gruppo di hacker Triplestrength, finora sconosciuto, attivo dal 2020. Il gruppo è composto da poc...
Copyright @ 2003 – 2024 REDHOTCYBER Srl
PIVA 17898011006